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A voting model(or a generalization of the Glauber model at zero temperature) on a multidimensional lattice
is defined as a system composed of a lattice, each site of which is either empty or occupied by a single particle.
The reactions of the system are such that two adjacent sites, one empty, the other occupied, may evolve to a
state where both of these sites are either empty or occupied. The continuum version of this model in a
D-dimensional region with a boundary is studied, and two general behaviors of such systems are investigated,
the stationary behavior of the system, and the dominant way of relaxation of the system toward its stationary
state. Based on the first behavior, a static phase transition(discontinuous changes in the stationary profiles of
the system) is studied. Based on the second behavior, a dynamical phase transition(discontinuous changes in
the relaxation times of the system) is studied. It is shown that the static phase transition is induced by the bulk
reactions only, while the dynamical phase transition is a result of both bulk reactions and boundary conditions.
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I. INTRODUCTION

The study of reaction-diffusion systems is an attractive
area. A reaction-diffusion system consists of a collection of
particles(of one or several species) moving and interacting
with each other with specific probabilities(or rates in the
case of a continuous time variable). In so called exclusion
processes, any site of the lattice the particles move on is
either vacant or occupied by one particle. The aim of study-
ing such systems is of course to calculate their time evolu-
tion. But to find the complete time evolution of a reaction-
diffusion system is generally a very difficult(if not
impossible) task.

Various methods have been used to study the reaction-
diffusion system: analytical techniques, approximation meth-
ods, and simulation. The success of the approximation meth-
ods may be different in different dimensions, as for example
the mean field techniques, working well for high dimensions,
generally do not give correct results for low-dimensional
systems. A large fraction of analytical studies belong to low-
dimensional(specially one-dimensional) systems, as solving
low-dimensional systems should in principle be easier
[1–12].

Various classes of reaction-diffusion systems are called
exactly solvable, in different senses. In[13–15], integrability
means that theN-particle conditional probabilityS matrix is
factorized into a product of two-particleS matrices. This is
related to the fact that for systems solvable in this sense,
there are a large number of conserved quantities. In[16–24],
solvability means closedness of the evolution equation of the
empty intervals(or their generalization).

Consider a reaction-diffusion system(on a lattice) with
open boundaries. By open boundaries, it is meant that in

addition to the reactions in the bulk of the lattice, particles at
the boundaries do react with some external source. A ques-
tion is to find the possible phase transitions of the system. By
phase transition, it is meant a discontinuity in some behavior
of the system with respect to its parameters. Such disconti-
nuities may arise in two general categories: in the stationary
(large time) profiles of the system, and in the time constants
determining the evolution of the system. In the first case,
static phase transitions are dealt with; in the second case,
dynamical phase transitions. For a review on dynamical
phase transitions, one can see, for example,[25].

There are systems for which the equation of motion of the
one-point function(the probability that a certain site be oc-
cupied) is closed, that is, independent of the more-point
functions[26–28]. Among these systems is the so called vot-
ing model(or a generalization of the Glauber model at zero
temperature). In [29] a voting system on a one-dimensional
lattice was studied, for which at the boundaries of the lattice
there is injection or extraction of the particles. Based on the
evolution of the one-point functions, it was shown there that
the system exhibits two kinds of phase transitions: a static
phase transition, corresponding to a discontinuous change in
the stationary profile of the one-point function; and a dy-
namical one, corresponding to a discontinuous change in the
behavior of the relaxation time of the system toward its sta-
tionary state. In[30–34], the phase structures of extensions
of such systems on a one-dimensional lattice were investi-
gated. All of these are restricted to the case of a one-
dimensional lattice.

Extending these investigations to higher-dimensional
cases would be interesting. Here, we want to study a multi-
dimensional extension of the voting model, on a continuum
rather than a lattice.

The scheme of the present article is as follows. In Sec. II,
the multidimensional voting model on a continuum is pre-
sented, and the evolution equation for the density of the par-
ticles is obtained. In Sec. III, the time independence of the
system is studied and it is shown that the system exhibits a
static phase transition. In Sec. IV, the relaxation of the sys-
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tem toward its stationary state is studied and it is shown that
the system exhibits a dynamical phase transition. Section V
is devoted to the concluding remarks.

II. MULTIDIMENSIONAL VOTING MODELS
ON CONTINUA

In [11,29], a one-dimensional voting model(or a gener-
alization of the Glauber model at zero temperature) on a
lattice was defined as follows. Let the system consist of a
one-dimensional lattice, each of the sites of which is either
emptysød or containing a single particlesAd, and let there be
a reaction between two neighboring sites such as

Aø→ AA with the rateu+,

øA→ øø with the rateu+,

øA→ AA with the rateu−,

Aø→ øø with the rateu−. s1d

In [11], an open lattice was investigated while in[29] a lat-
tice was studied at the boundaries of which injection and
extraction of particles could occur. It was shown that these
models are autonomous, meaning that the evolution equation
of then-point functions contain onlyn- or fewer-point func-
tions. In fact, as was seen in[29],

d

dt
knil = u+kni−1l + u−kni+1l − su+ + u−dknil. s2d

Here ni is the particle number operator at the sitei of the
lattice.

Now consider a multidimensional lattice, each site of
which is either empty or occupied by a single particle, and
let there be a reaction such as

Aø→ AA with the rateul ,

øA→ øø with the rateul . s3d

Here, we are considering the reaction between a sitei (the
right site), which is the ending point of the linkl, and another
site (the left site) which is the starting point of the same link.
In a one-dimensional lattice, each site is the ending point of
two links, which have been denoted by + and −. From Eq.
(3), it is seen that the evolution equation for the one-point
function is

d

dt
knil = o

l

fulskni−ll − kni−lnild − ulsknil − kni−lnildg, s4d

where by the site indexi − l, is meant a site which is the
starting point of the linkl, the ending point of which is the
site i. It is seen that the two-point functions in the right-hand
side of Eq.(4) cancel each other. So

d

dt
knil = o

l

ulskni−ll − knild. s5d

Now, assume that the one-point function is a slowly vary-
ing function of its argumentsid. In this case, one can define a
smooth particle density function of the continuous position
variabler , with

rsr id ª
1

V knil, s6d

where r i is the position of the lattice sitei, and V is the
specific hypervolumeof the site. Then Eq.(5) can be rewrit-
ten as

]

] t
r = o

l

ulF− dl · = +
1

2
sdl · = d2Gr, s7d

wheredl is the link vector, equal to the position of the ending
point of the link l minus the position of the starting point of
the link l, and higher-derivative terms have been neglected.
Using suitable coordinates forr , one can write the second
derivative as

1

2o
l

ulsdl · = d2 = o
a
S ]

] xaD2

, s8d

where thexa’s are the coordinates ofr . So Eq.(7) is rewrit-
ten as

]

] t
r = s− v · = + ¹2dr, s9d

where

v ª o
l

uldl . s10d

Equation(9) is nothing but a diffusion equation combined
with a drift velocity v.

Suppose that Eq.(9) holds for the interior of the regionV.
Integrating Eq.(9) on V, one arrives at

d

dt
E

V

dV r = −R
]V

dSn ·vr +R
]V

dSn · = r. s11d

The first term in the right-hand side is the rate of change of
the total number of particles inside, as a consequence of the
drift, while the second term is the effect of injecting or ex-
tracting particles at the boundary. The boundary condition

n · = r = a − br at the boundary s12d

corresponds to an injection rate ofa per unit hyperarea of the
boundary, and an extraction rate ofb per unit hyperarea per
particle density at the boundary. In general, one can takea
andb position dependent.

Comparing Eqs.(9) and (12) with Eq. (7) of [29], it is
seen that one can transform Eq.(7) of [29] to Eqs.(9) and
(12) through

d =Î 2

u + v
,

v · x̂ = dsu − vd,
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a− =
a

dun
,

b− =
a + a8

du
,

a+ =
b

dun
,

b+ =
b + b8

dv
, s13d

where the right-hand sides are the quantities defined in[29],
and the superscripts − and + refer to the left and right bound-
aries, respectively.

From now on, for simplicity we restrict ourselves to the
case that the volumeV is a D-dimensional hyperball with
radiusR, the boundary of which is a hypersphere.

III. THE TIME-INDEPENDENT STATE AND THE STATIC
PHASE TRANSITION

Let r0 be the time-independent solution to Eqs.(9) and
(12). Using the ansatz

Fqsr d ª expsq · r d s14d

(with q a constant vector) as a time-independent solution to
Eq. (9), one arrives at

q ·q − v ·q = 0, s15d

which leads to

q =
1

2
sv + v8d, s16d

wherev8 is an arbitrary constant vector subject to the condi-
tion

v8 ·v8 = v ·v. s17d

So one can write the general time-independent solution to
Eq. (9) as

r0sr d =E dV8ÃsV8dFqsr d

=E dV8AsV8dexpH1

2
fsv + v8d · r − uv + v8uRgJ

¬E dV8AsV8dexpfGsv8,r dg, s18d

whereV8 denotes the angular coordinates ofv8, andA is an
arbitrary function. It is easy to see that the maximum value
of G is zero, and this maximum value is reached at a point on
the boundarysr =Rd, wherer is parallel withv+v8.

For large values ofR and r ,G is a rapidly varying func-
tion and the integral is mainly determined from that point of
the integration region which maximizesG. Generally, there
may be two such points. One point is

v18 = − v. s19d

The other point is

sv28 + vd · r = uv28 + vur for r = R, s20d

which means thatq is parallel withr . As the angle between
q andv cannot exceedp /2, the second point exists only if
the angle betweenr andv is less thanp /2. One has

Gsv18,r d = 0 s21d

and

Gfv28sr d,r g = Gfv28sR r /rd,r g + OfsR− rd2g

=
sr − Rduv + v82u

2
+ Ofsr − Rd2g

=
sr − Rdv · r

R
+ Ofsr − Rd2g. s22d

Using Eqs.(21) and (22), one arrives at

r0sr d

, 5C1sVd, r , R, r ·v , 0,

C1sVd + C2sVdexpF sr − Rdv · r

R
G , r , R, r ·v . 0.6

s23d

From this,

=r0sr = Rd ~ nsn ·vdusn ·vd, R→ `, s24d

whereu is the step function. It is seen that in the thermody-
namic limit sR→`d, the density profile at the boundary is
stationary, unlessv ·r .0. So, changingv one can induce a
discontinuous change in the slope of the profile density at the
boundary. This is the static phase transition, which is seen to
be independent of the injection and extraction terms, but de-
pendent on the drift velocity.

IV. THE RELAXATION OF THE SYSTEM TOWARD THE
STATIONARY STATE, AND THE DYNAMIC PHASE

TRANSITION

Starting from Eqs.(9) and (12), one arrives at

]

] t
sr − r0d = s− v · = + ¹2dsr − r0d ¬ hsr − r0d s25d

and

n · = sr − r0d = − bsr − r0d at the boundary s26d

where r0 is the time-independent solution to Eqs.(9) and
(12). Let c be an eigenfunction ofh corresponding to the
eigenvalueE. Using the ansatz(14) in the eigenvalue equa-
tion corresponding toh, one arrives at

q ·q − v ·q = E, s27d

which leads to
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q =
1

2
sv + v8d, s28d

wherev8 is an arbitrary constant vector subject to the condi-
tion

v8 ·v8 = v ·v + 4E. s29d

So one has

csr d = expsv · r /2d E dV8AsV8dexpsv8 · r /2d, s30d

whereA is to be found so that the boundary condition(26) is
satisfied withc.

If the right-hand side of Eq.(29) is positive, thenv8 is
real, and for larger, one can approximatec as

csr d , expsv · r /2dAsVdexpsv8r/2d, s31d

whereV are the angular coordinates corresponding tor . The
boundary condition(16) then becomes

Fv8

2
+ bsVd +

n ·v

2
GAsVd = 0. s32d

This has a nonzero solution forA, provided the expression in
brackets vanishes for someV. As bù0, this happens for
some(real) positivev8, if and only if

minFbsVd +
v cosf

2
G , 0, s33d

wheref is the angle betweenr andv. If (33) holds, then the
range ofv8 for which a nonzero solution to Eq.(32) for A
exists is

0 ø v8 ø − minFbsVd +
v cosf

2
G . s34d

[This is true for more than one dimension. If the space is one
dimensional,v8 has only one acceptable value, as the expres-
sion in brackets in Eq.(32) has only two values, at most one
of which can be zero.]

If (33) holds, then there exist eigenvaluesE for h, with
E.−v ·v /4. Otherwise, all of the eigenvalues ofh are less
than or equal to −v ·v /4. The relaxation time of the system is

t = −
1

Emax
, s35d

whereEmax is the largest eigenvalue ofh. The largest value
of E is either −v ·v /4, or the value obtained from Eq.(29) for
the largest value ofv8. So

t =5
4

v ·v
, minFbsVd +

v cosf

2
G . 0,

4

v ·v − hminf2bsVd + v cosfgj2 , minFbsVd +
v cosf

2
G , 0.6 s36d

In the first case, the system is in the fast dynamical phase, in
which the relaxation time does not depend on the boundary
conditions. In the second case, the system is in the slow
dynamical phase, in which the relaxation time is larger and
does depend on the boundary conditions. This is the dynami-
cal phase transition.

V. CONCLUDING REMARKS

It was seen that the so-called voting model defined on a
one-dimensional lattice has a natural analog on a multidi-
mensional continuum. It was seen that there are two kinds of
phase transition, a static one corresponding to a discontinu-
ous change in the behavior of the stationary profile of the
system, and a dynamical phase transition corresponding to
the relaxation of the system toward its stationary state. The
static phase transition is controlled by the bulk reactions,
while the dynamical phase transition is controlled by the
bulk reactions and the boundary conditions both. This is
analogous to what is seen for the case of a one-dimensional
lattice.

There are, however, differences. In the multidimensional
case, the static transition occurs when the direction of the
drift velocity is changed. This can happen without it being
necessary that the drift velocity vanishes. In the one-
dimensional case, however, the static phase transition occurs
only when the drift velocity passes zero. The reason is that in
one dimension the only way to change the direction of a
vector smoothly is that the vector vanishes at some point.

The second difference concerns the dynamical phase tran-
sition; to be more precise, the largest eigenvalues of the op-
eratorh defined in Eq.(25). In the one-dimensional case and
in the slow phase, there is only one eigenvalue greater than
the largest eigenvalue corresponding to the fast phase. In the
multidimensional case, however, in the slow phase the spec-
trum of h contains a continuous region the lower bound of
which is the largest eigenvalue ofh in the fast phase. This
means that in the one-dimensional case and in the slow
phase, there is a largest relaxation time and a gap between
this and the next largest relaxation time, while in the multi-
dimensional case, there is no such gap.
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