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Static and dynamic phase transitions in multidimensional voting models on continua
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A voting model(or a generalization of the Glauber model at zero temperatur@ multidimensional lattice
is defined as a system composed of a lattice, each site of which is either empty or occupied by a single particle.
The reactions of the system are such that two adjacent sites, one empty, the other occupied, may evolve to a
state where both of these sites are either empty or occupied. The continuum version of this model in a
D-dimensional region with a boundary is studied, and two general behaviors of such systems are investigated,
the stationary behavior of the system, and the dominant way of relaxation of the system toward its stationary
state. Based on the first behavior, a static phase transdisoontinuous changes in the stationary profiles of
the systemis studied. Based on the second behavior, a dynamical phase traiidioontinuous changes in
the relaxation times of the systes studied. It is shown that the static phase transition is induced by the bulk
reactions only, while the dynamical phase transition is a result of both bulk reactions and boundary conditions.
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[. INTRODUCTION addition to the reactions in the bulk of the lattice, particles at
. o ] ~ the boundaries do react with some external source. A ques-
The study of reaction-diffusion systems is an attractivetion is to find the possible phase transitions of the system. By
area. A reaction-diffusion system consists of a collection ofphase transition, it is meant a discontinuity in some behavior
particles(of one or several speciesoving and interacting  of the system with respect to its parameters. Such disconti-
with each other with specific probabilitig®r rates in the nuities may arise in two general categories: in the stationary
case of a continuous time variahlén so called exclusion (large time profiles of the system, and in the time constants
processes, any site of the lattice the particles move on idetermining the evolution of the system. In the first case,
either vacant or occupied by one particle. The aim of studystatic phase transitions are dealt with; in the second case,
ing such systems is of course to calculate their time evoludynamical phase transitions. For a review on dynamical
tion. But to find the complete time evolution of a reaction- phase transitions, one can see, for examj@8).
diffusion system is generally a very difficultif not There are systems for which the equation of motion of the
impossiblg task. one-point functionthe probability that a certain site be oc-
Various methods have been used to study the reactiorfuPied is closed, that is, independent of the more-point
diffusion system: analytical techniques, approximation methfunctions[26-28. Among these systems is the so called vot-
ods, and simulation. The success of the approximation mett{ld model(or a generalization of the Glauber model at zero

ods may be different in different dimensions, as for exampld€MPerature In [29] a voting system on a one-dimensional
the mean field techniques, working well for high dimensions attice was studied, for which at the boundaries of the lattice

generally do not give correct results for Iow-dimensional’there is injection or extraction of the particles. Based on the

systems, A large fraction of analytical studies belong to low evolution of the one-point functions, it was shown there that

di ) il di . . Vi ‘the system exhibits two kinds of phase transitions: a static
|mer_13|ona_l(speC|a y one- mensmn)aisys ems, as solving Iphase transition, corresponding to a discontinuous change in
low-dimensional systems should in principle be easier

11 he stationary profile of the one-point function; and a dy-
[ _VZ: | f ion-diffusi I namical one, corresponding to a discontinuous change in the
arious classes of reaction-diffusion systems are ca e%ehavior of the relaxation time of the system toward its sta-

exactly solvable, in o!ifferent s_e_nses.[llB—lEj_,_integrat_)ili'_[y tionary state. IN30-34, the phase structures of extensions
means that thé&l-particle conditional probabilitys matrix is ¢ ¢k systems on a one-dimensional lattice were investi-

factorized into a product of two-particl® matrices. This is gated. All of these are restricted to the case of a one-
related to the fact that for systems solvable in this Sensedimeﬁsional lattice

there a}(ealarge number of conserved q“"?‘”““egl@fz‘!’ Extending these investigations to higher-dimensional
solvability means closedness of the evolution equation of th%ases would be interesting. Here, we want to study a multi-

empty intervals(or their generalization o dimensional extension of the voting model, on a continuum
Consider a reaction-diffusion systean a latticg with rather than a lattice

open boundaries. By open boundaries, it is meant that in" o scheme of the present article is as follows. In Sec. II,

the multidimensional voting model on a continuum is pre-
sented, and the evolution equation for the density of the par-

*Electronic address: farinaz@iasbs.ac.ir ticles is obtained. In Sec. lll, the time independence of the
"Electronic address: mohamadi@alzahra.ac.ir system is studied and it is shown that the system exhibits a
*Electronic address: mamwad@mailaps.org static phase transition. In Sec. 1V, the relaxation of the sys-
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tem toward its stationary state is studied and it is shown that Now, assume that the one-point function is a slowly vary-

the system exhibits a dynamical phase transition. Section Vhg function of its argumenti). In this case, one can define a

is devoted to the concluding remarks. smooth particle density function of the continuous position
variabler, with

1
Il. MULTIDIMENSIONAL VOTING MODELS or) = =(n), (6)
ON CONTINUA V

In [11,2q’ a one-dimensional Voting mod@r a gener- Whereri is the pOSition of the lattice siteg andV is the
alization of the Glauber model at zero temperatura a  SPecific hypervolumef the site. Then Eq5) can be rewrit-
lattice was defined as follows. Let the system consist of 4en as
one-dimensional lattice, each of the sites of which is either P 1
empty (@) or containing a single particlgd), and let there be —p=2 u,[— 6-V+=(6-V )2];), (7)
a reaction between two neighboring sites such as Jt [ 2

Ag— AA with the rateu,, whered, is the link vector, equal to the position of the ending
point of the linkl minus the position of the starting point of
the link I, and higher-derivative terms have been neglected.
Using suitable coordinates far, one can write the second
derivative as

gA— @@ with the rateu,,

gA— AA with the rateu_, ,

1

> u.(«i-V)2=E(ia), (®)
| a

Ag— @@ with the rateu_. (1) ax

In [11], an open lattice was investigated while[20] a lat-  \here thexs are the coordinates of So Eq.(7) is rewrit-
tice was studied at the boundaries of which injection andep, 55

extraction of particles could occur. It was shown that these
models are autonomous, meaning that the evolution equation J v 472
of the n-point functions contain only- or fewer-point func- Ep =(-v-V +V9p, ©)

tions. In fact, as was seen ja9],
where

d
d_t<ni> = Up(Ni—p) + UM ) = (Uy + U)(N;). (2 Vi= D ué. (10)
|
Here n; is the particle number operator at the sitef the _ . _ o _ _
lattice. Equation(9) is nothing but a diffusion equation combined
Now consider a multidimensional lattice, each site ofWith a drift velocityv. o .

which is either empty or occupied by a single particle, and Suppose that Eq9) holds for the interior of the regioW.
let there be a reaction such as Integrating Eq(9) onV, one arrives at

i d
Ag— AA with the rateu,, 21 dvp= _fﬁ dsn _Vp+3g dsn-Vp. (11
dtJy N N
gA— @@ with the ratey,. (3) i ) . L
The first term in the right-hand side is the rate of change of

Here, we are considering the reaction between aisitee  the total number of particles inside, as a consequence of the
right site), which is the ending point of the link and another  drift, while the second term is the effect of injecting or ex-
site (the left sitg which is the starting point of the same link. tracting particles at the boundary. The boundary condition

In a one-dimensional lattice, each site is the ending point of

two links, which have been denoted by + and -. From Eq. n-Vp=a-pp attheboundary (12

gﬁ%clttlolrsl isseen that the evolution equation for the One'pomtcorresponds to an injection rate @fper unit hyperarea of the

boundary, and an extraction rate @fper unit hyperarea per
d particle density at the boundary. In general, one can take
a(ni> => LU (i) = <mim)) = u Ky =<miym)) 1, (4) and B position dependent.
' Comparing Egs(9) and (12) with Eq. (7) of [29], it is
where by the site index—-I, is meant a site which is the Seen that one can transform K@) of [29] to Egs.(9) and
starting point of the linK, the ending point of which is the (12) through

sitei. It is seen that the two-point functions in the right-hand 5
side of Eq.(4) cancel each other. So PERY ,
q u+v
—(n) =2 u(niy) = (my)). (5 R
dt I v X=8Uu-v),
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__a Vi=-V. (19
a =",
duv The other point is
_ a+a’ (Vo+V) -r=|va+v|r forr=R, (20
A= ou which means thag is parallel withr. As the angle between
g andv cannot exceedr/2, the second point exists only if
,_ b the angle between andv is less thanz/2. One has
a =—_—,
duv G(vy,r)=0 (21)
b+b' and
= —, (13
S GIv4(r),r1=GVy(R r/r),r1+O[(R-1)?]
where the right-hand sides are the quantities defing@9h (r=R)|v+Vv',| 5
and the superscripts — and + refer to the left and right bound- = 2 +O[(r -R)7]
aries, respectively.
From now on, for simplicity we restrict ourselves to the _(r=Ryv-r +Ol(r —R)? 22
case that the volum¥ is a D-dimensional hyperball with B R [(r=R)7. (22

radiusR, the boundary of which is a hypersphere. ) ]
Using Eqgs.(21) and(22), one arrives at
lll. THE TIME-INDEPENDENT STATE AND THE STATIC

r
PHASE TRANSITION polr)

Let py be the time-independent solution to E@8) and
(12). Using the ansatz Ci(D), r~Rr-v<o,

Fo(r) = explq 1) (14) ey + cZ(Q)exp[%] L r~Rr-v>0.

(with g a constant vectgras a time-independent solution to (23)
Eqg. (9), one arrives at

From this,
g-q-v-q=0, (15)
which leads to Vpor=R)=n(n-v)é(n-v), R—x, (24)

where 6 is the step function. It is seen that in the thermody-
q= }(v+v’), (16) namic limit (R— ), the density profile at the boundary is
2 stationary, unlesg -r >0. So, changin@ one can induce a
discontinuous change in the slope of the profile density at the

wherev’ is an arbitrary constant vector subject to the condi- > . ) S
y ) boundary. This is the static phase transition, which is seen to

tion . S .
be independent of the injection and extraction terms, but de-
vievi=vev. (17)  pendent on the drift velocity.
So one can write the general time-independent solution to
Eq.(9) as IV. THE RELAXATION OF THE SYSTEM TOWARD THE
STATIONARY STATE, AND THE DYNAMIC PHASE

~ TRANSITION
po(r)=fdQ’A(Q’)Fq(r)
Starting from Eqgs(9) and(12), one arrives at

1
:f dQ’A(Q’)exp{ 5[(\/ wv)r- |V+V,|R]} %(P_Po) =(-v-V+ VZ)(P_PO) =h(p-po) (25

= f dQ'AQ)exd G(v',r)], (18 and
where()’ denotes the angular coordinatesvéf andA is an NV (p=po)==Alp=po) atthe boundary - (26)
arbitrary function. It is easy to see that the maximum valuevhere pg is the time-independent solution to Eg$) and
of G is zero, and this maximum value is reached at a point of12). Let ¢ be an eigenfunction of corresponding to the
the boundary(r=R), wherer is parallel withv+v’. eigenvalueE. Using the ansatzl4) in the eigenvalue equa-
For large values oR andr,G is a rapidly varying func- tion corresponding td, one arrives at
tion and the integral is mainly determined from that point of q-q-v-q=E (27)
the integration region which maximiz&s. Generally, there '
may be two such points. One point is which leads to
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1 cos
q:E(v+v’), (28) min{/}(ﬂ)+v > d)} <0, (33
wherev’ is an arbitrary constant vector subject to the condi- i
tion where¢ is the angle betweenanduv. If (33) holds, then the
range ofv’ for which a nonzero solution to E¢32) for A
v v/ =v-v+4E. (29) exists is
So one has
cos
Osv's—min[ﬁ(nwv—d’]. (34)
Y(r)=expv -r/2) J dQ'AQ)exp(v' -r/2), (30) 2

whereA is to be found so that the boundary conditi@®) is  [This is true for more than one dimension. If the space is one

satisfied withy. dimensionalp’ has only one acceptable value, as the expres-
If the right-hand side of Eq(29) is positive, thenv’ is  Sion in brackets in Eq:32) has only two values, at most one
real, and for large, one can approximate as of which can be zer¢.
If (33) holds, then there exist eigenvalugsfor h, with
Plr) ~ explv - r12)A(Q)expv'r/2), (31  E>-v.v/4. Otherwise, all of the eigenvalues bfare less

where( are the angular coordinates corresponding, fhe than or equal to ¥-v/4. The relaxation time of the system is

boundary conditior{16) then becomes
! . ==, 35
ERT e AT @2 " %9

This has a nonzero solution fé, provided the expression in  whereE,,,, is the largest eigenvalue &f The largest value
brackets vanishes for somfe. As =0, this happens for of Eis either -v-v/4, or the value obtained from E9) for

some(real) positivev’, if and only if the largest value of’. So
|
4 ) v COS¢
— >
vy mln[ﬁ(ﬂ)+ 2 ] 0, o
- 4 min[ (Q)+UCOS¢] <0 0
v -v—{min[2B8(Q) + v cos¢]}?’ k 2 '

In the first case, the system is in the fast dynamical phase, in There are, however, differences. In the multidimensional
which the relaxation time does not depend on the boundargase, the static transition occurs when the direction of the
conditions. In the second case, the system is in the slowlrift velocity is changed. This can happen without it being
dynamical phase, in which the relaxation time is larger anchecessary that the drift velocity vanishes. In the one-
does depend on the boundary conditions. This is the dynamitimensional case, however, the static phase transition occurs
cal phase transition. only when the drift velocity passes zero. The reason is that in
one dimension the only way to change the direction of a
vector smoothly is that the vector vanishes at some point.

It was seen that the so-called voting model defined on a The second difference concerns the dynamical phase tran-
one-dimensional lattice has a natural analog on a multidisition; to be more precise, the largest eigenvalues of the op-
mensional continuum. It was seen that there are two kinds afratorh defined in Eq(25). In the one-dimensional case and
phase transition, a static one corresponding to a discontinun the slow phase, there is only one eigenvalue greater than
ous change in the behavior of the stationary profile of thethe largest eigenvalue corresponding to the fast phase. In the
system, and a dynamical phase transition corresponding tmultidimensional case, however, in the slow phase the spec-
the relaxation of the system toward its stationary state. Th&rum of h contains a continuous region the lower bound of
static phase transition is controlled by the bulk reactionswhich is the largest eigenvalue bfin the fast phase. This
while the dynamical phase transition is controlled by themeans that in the one-dimensional case and in the slow
bulk reactions and the boundary conditions both. This iphase, there is a largest relaxation time and a gap between
analogous to what is seen for the case of a one-dimensiontllis and the next largest relaxation time, while in the multi-
lattice. dimensional case, there is no such gap.

V. CONCLUDING REMARKS
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